

Technical Feasibility of Glass Optical Fibers for Automotive Ethernet

A Furukawa Compan

PRESENTED BY: G. Mabud Choudhury, OFS John S. Abbott, Corning Incorporated John Earnhardt, OFS jea hardt@ofsoptics.com Masato Shiino, Furukawa Electric Co. Ltd.

- Introduction
- Glass optical multimode fiber links for Enterprise and Data Center networks
- Glass optical fiber in harsh environment applications
 - Distributed Temperature Sensing
 - Aerospace/Avionics
- Technical feasibility for Automotive environments based on glass, optical multimode fiber for IEEE
- Photonics in Automotive
- ISO and IEC standardization for Automotive
- Summary and future work

Corning, OFS, Furukawa Electric Group Experience

- Corning, OFS, and Furukawa have experience both in applying optical fiber with industrialized coating and cabling in harsh environments, as well as experience with the automotive industry in other areas.
- See backup slides for more information on experience.

Introduction

- The IEEE 802.3 Ethernet standards group has two current projects P802.3cy and P802.3cz looking at standards for higher data rate Ethernet in vehicles. P802.3cy is looking at "electrical/copper" standards, and P802.3cz is looking at "optical/fiber" standards.
- The IEEE P802.3cz Multi-Gigabit Optical Automotive Ethernet Task Force is looking at data rates of 2.5, 5, 10, 25, 50 Gb/s (up to 50 Gb/s per lane) over distances of 15m-40m in vehicles.
- As the data rates increase, optical links have transitioned from LEDs to high-speed verticalcavity surface-emitting lasers (VCSELs) which were first seen in CD-players but are now ubiquitous.
- This presentation will focus on the technical feasibility of glass optical multimode fibers (MMF, OM3 type) whose specifications are optimized to work with high speed VCSELs
- OM3 fiber is available with industrialized coating and cabling suitable for automotive.

Automotive Ethernet – IEEE 802.3 Standards, Task Forces (TF)

CORNING

IEEE		Start	Completion				
Standard/TF	Name	Date	Date	Speed	Cabling	Inline Connectors	Reach
IEEE Std							
802.3bp™-2016	1000BASE-T1	3/2012	6/2016	1 Gb/s	Cu	4	15 m, 40 m
IEEE Std							
802.3bw™-2015	100BASE-T1	3/2014	10/2015	100 Mb/s	Cu	4	15m
IEEE Std							
802.3bv™-2017	1000BASE-RH	3/2014	2/2017	1 Gb/s	POF	4, 0	15m, 40 m
IEEE Std							
802.3cg [™] -2019	10BASE-T1S/-TL	7/2016	11/2019	10 Mb/s	Cu	4, 8 nodes, 10	15 m, 25 m, 1 km
IEEE Std							
802.3ch™-2020	2.5/5/10G BASE-T1	11/2016	6/2020	2.5, 5, 10 Gb/s	Cu	4	15 m
			06 - 09	25, 50, 100 Gb/s			
P802.3cy TF		3/2019	2023*	1, 2, 4 lanes	Cu	2	11 m
				2.5, 5, 10, 25 Gb/s		4	40 m
P802.3cz TF		7/2019	07/2023*	50 Gb/s	Optical	2	15 m

*Target completion date for standard based on project timeline

Multimode Fiber (MMF), OM3

- Multimode fiber (MMF) is a type of glass optical fiber mostly used for communication over shorter distances at higher data rates (typically > 1 Gb/s).
- In multimode fiber, light is carried over a number of different paths, or modes.
- Laser optimized multimode fiber (LOMMF) is specifically optimized to work with relatively lowcost, high data rate, vertical-cavity surface-emitting lasers (VCSELs).
- OM3 is a type of LOMMF (types are differentiated by bandwidth).
- OM3 is 50/125 µm (core/cladding diameters) graded-index, glass optical laser optimized multimode fiber.

(described in the industry using primarily the ISO/IEC 11801 designations)									Bandwidth (MHz-km)			
Industry Standards					Attenua Typical Cab (dB/kr	Attenuation - pical Cabled Max. (dB/km)		Overfilled Launch (OMBc)		Effective Modal Bandwidth (EMB) (also know n as Laser BW)		
Fiber Type	ISO/IEC 11801-1 Nov. 2017	IEC 60793-2-10 May 2019	TIA-568.3 2021 draft	TIA/EIA 492AAAF April 2020	ITU-T Dec. 2008	850nm	1300nm	850nm	1300nm	850nm	953nm	
62.5/125	OM1	A1-OM1	TIA 492AAAF (A1-OM1)	A1-OM1		3.5	1.5	200	500		-	
50/125	OM2	A1-OM2	TIA 492AAAF (A1-OM2)	A1-OM2	G.651.1	3.5	1.5	500	500			
50/125	OM3	A1-OM3	TIA 492AAAF (A1-OM3)	A1-OM3		3.0 ⁽²⁾	1.5	1500	500	2000		
50/125	OM4	A1-OM4	TIA 492AAAF (A1-OM4)	A1-OM4		3.0 ⁽²⁾	1.5	3500	500	4700		
50/125	OM5	A1-OM5	TIA 492AAAF (A1-OM5)	A1-OM5		3.0	1.5	3500	500	4700	2470	

VCSELs - Growing Volume & Markets

 Economic feasibility of VCSEL-MMF links based on high volume, low-cost, high data rate VCSELs

Source: II-VI. Used with permission from II-VI

IEEE SA Ethernet & IP @ Automotive Technology Week (E&IP@ATD), 3 Nov 2021 - 4 Nov 2021

VCSEL-MMF Links for Enterprise & Data Center Applications

20+ years of 10+ Gb/s Multimode Fiber in Data Centers

- VCSELs:
 - Low cost, manufacturability, integration, reliability, testability, scalability, packaging, custom packaging, low power
- MMF:
 - Larger core size decreases alignment costs, leading to lower cost connectivity solutions relative to SMF
 - Higher resilience to contamination. Higher usability relative to SMF
 - Higher fiber cost, but lower link cost
- High volume, reliable, interoperable, commercially successful solutions
- Established short reach solution for high-speed networks over the past 20 years

Source: II-VI/Finisar

20+ years of 10+ Gb/s Multimode Fiber in Data Centers

- The 50µm OM3 multimode fiber was developed in 2002 in concert with the development of 10Gb/s VCSELs as a low- cost solution for data centers.
- The fiber has continued to be used at higher data rates and incorporated into IEEE standards for the last 20 years.
- 50G PAM4, 100 Gb/s per lane
- Millions of kms of OM3/OM4 fiber have been deployed in data centers in many millions of links.

OM3 Development in IEEE

CORNIN

Cabling for Harsh Environment: Distributed Temperature Sensing

- Multimode Fibers are used in the oil and gas industry as distributed temperature sensors enabling scientists and engineers to map out temperatures under the earth.
- The fibers are protected by special cabling which can withstand the harsh environment including temperatures of 200+° C (references below).
- References:
 - Smolen and van de Spek, "Distributed Temperature Sensing: A DTS Primer for Oil and Gas Production", 2003
 - <u>http://drilling.posccaesar.org/export/385/projects/DailyProductionReport_1.0/XML/Version1.0/WITSML131/d</u> oc/Shell_DTS_Primer.pdf
 - Fenta, Potter, and Szanyi, "Fibre Optic Methods of Prospecting: A Comprehensive and Modern Branch of Geophysics", Surveys in Geophysics (2021)
 - Open Access: <u>https://link.springer.com/article/10.1007/s10712-021-09634-8</u>
- The high-temperature MMF cabling for sensing can be tailored for the automotive environment. Lower cost based on higher volume of automotive market.

Source:

CORNIN

https://www.corning.com/catalog/coc/documents/articles/distributedsensing-cable-in-industrial-environments.pdf

Source: Brian et al., US2012/0010846 A1 Jan 12, 2012

- First used in rigorous military applications more than 25 years
- Data backbone on F-16, F-18 variants, F-22, and Joint Strike Fighter (JSF)
- Retrofit in various airframe upgrades: C-130 Hercules
- Initial commercial uses in non mission critical applications: e.g. in-flight entertainment
- Proven success is generating further commercial implementation
- Military and commercial are adopting higher data rates, pushing toward higher bandwidth multimode fibers (e.g., OM3 and OM4)
- Multi-fiber cables also in active development

Aerospace Requirements - Similar to Automotive

Wide temperature range and robust mechanical performance

High reliability and long lifetime 20+ vears Wide operating temperature range -55° C to +125° C for commercial aerospace, higher for military Tight bends and repeated flexing 9 mm bend radius Installation stresses Crush/clamping stresses Resistance to microbending losses as well as mechanical damage Chemical resistance as a cable Various oils, fuels, fluids, salt spray, etc. Flammability FAA, SAE, and OEM specific tests Smoke and Toxicity Issues Low Smoke Zero Halogen an issue for applications in passenger areas

Thermal testing of Avionics Cable

Shock at -55° C to +165° C

Thermal Shock

This test was performed in accordance with FOTP-3. The temperature extremes were -55°C to +165°C. One hundred cycles were performed with a 0.5 hour dwell at each temperature extreme. The sample lengths were 10 meters. Optical performance was monitored at both 850nm and 1300nm. Max attenuation change <0.20 dB

Permanent Change in Attenuation (dB/10m) after Test						
62202B	62203A	62203B	62202B	62203 A	62203B	
850nm	850nm	850nm	1300nm	1300nm	1300nm	
0.17	0.09	0.13	0.19	0.09	0.11	

Thermal testing of Avionics Cable

Cycling at -55° C to +165° C

CORNING CORNING

Thermal Cycling

This test was performed in accordance with FOTP-3. The temperature extremes were -55° C to $+165^{\circ}$ C for a total of 5 cycles. The dwell time at ambient and each temperature extreme was 1 hour. The sample lengths were 10 meters. Optical performance was monitored at both 850nm and 1300nm. Max attenuation change <0.35 dB

Avionics Fiber Optic Qualification

Selected Mechanical Tests at 850 & 1300 nm

Cyclic Flex

10k cycles Max attenuation change <0.4 dB

Compression

Max load reached 4500 lbs Max attenuation change <0.15 dB

Avionics Fiber Optic Qualification

Selected Mechanical Tests at 850 & 1300 nm

Tensile loading and bending Max load to 600N, 45 mm diameter Max attenuation change <0.05 dB

Testing Specifically for Automotive Temperatures

Test at Corning of OM3 fiber for 3000 hours at 105° C. Less than 0.04dB variation in attenuation

IEEE SA Ethernet & IP @ Automotive Technology Week (E&IP@ATD), 3 Nov 2021 - 4 Nov 2021

19

Acknowledgment:: Rubén Pérez-Aranda (KDPOF)

14 15 IEEE 802.3 OMEGA Study Group - January 2020 Interim IEEE 802.3 OMEGA Study Group - January 2020 Interim IEEE 802.3 OMEGA Study Group - January 2020 Interin Source: https://www.ieee802.org/3/OMEGA/public/jan 2020/perezaranda OMEGA 02 0120 25G Corning fiber.pdf Lower diagrams after

Corning MM50BI-XMT-H (GI glass fiber OM3) Open eye at much longer distances than required at -40, +125

CORNING

25 Gb/s Transmission over Harsh Environment Multimode Fiber Technical Feasibility (Corning Fiber)

15 m. 40 m. and 205 m

TRUMPF VCSEL-ULM850-25-TT-V03

planned signal

processing

FURUKAWA

Technical Feasibility (OFS fiber) A Furukawa Company Open eye at much OFS C24712, FlightLinx® 50 µm OM3 Optical Cable, 100 m longer distances than TRUMPF VCSEL-ULM850-25-TT-V03 required at -40, +125 **ر**ة Eye diagram, -40 °C, 100 m Eye diagram, 25°C, 100 m Eye diagram, 125°C, 100 m 10 22 5tt Swyle Usa VCSEL ID #152150, 6.5 um, 5 mA VCSEL ID #152150_6.5 um_3 mA 1 III 🖬 I VCSEL ID #152150. 6.5 um. 3 m/ IEEE 802.3 OMEGA Study Group - January 2020 Interim 12 IEEE 802.3 OMEGA Study Group - January 2020 Interim 13 IEEE 802.3 OMEGA Study Group - January 2020 Interim 14

CORNING

Source: https://www.ieee802.org/3/OMEGA/public/jan_2020/perezaranda_OMEGA_03_0120_25G_OFS_fiber.pdf Acknowledgment:: Rubén Pérez-Aranda (KDPOF)

25 Gb/s Transmission over Harsh Environment Multimode Fiber

IEEE SA Ethernet & IP @ Automotive Technology Week (E&IP@ATD), 3 Nov 2021 - 4 Nov 2021

Lower diagrams after

planned signal

processing

Get ready for Photonics in Automotive

Source: Adobe Stock (licensed)

- Many companies working on LiDAR systems
- Some system architectures utilize optical fibers and VCSELs
- 3D sensing and automotive volumes drives economic feasibility

LiDAR systems are now undergoing integration and qualification

Source: https://www.iso.org/technical-committees.html

General requirements and test methods of in-vehicle optical harnesses for up to 100Gbit/s communication

Source: https://www.ieee802.org/3/cz/public/15_dec_2020/fukuoka_3cz_01a_151220_IS024581.pdf

Multi-Gig Optical Automotive Ethernet and IEC

- IEEE currently references IEC standards in all Ethernet Standards
 - The Automotive application is unique and one that IEC will address
- Initial progress
 - TC 86 Fibre optics Technical Committee
 - Established a liaison with IEEE 802.3 and IEEE 802.3cz with Vince Ferretti as liaison
 - SC86A will consider
 - · High temperature fiber standards
 - · New cable designs specific to automotive
 - SC86B will consider
 - New service environment definitions for automotive
 - New connector designs specific to automotive
 - SC86C will consider
 - Transmitters VCSELs and Silicon Photonics
 - High temperature VCSEL reliability
 - Harness test standards

Source: Steve Swanson, Corning/US Delegate

Summary and Future Work

- It was shown that there is technical feasibility and reliability of glass optical fiber for in-vehicle communication based on:
 - A 20+ year foundation of reliability and commercialization of VCSEL-MMF short-reach, high data rate links for data centers.
 - The extensive use of glass optical fibers in multiple harsh environment applications, some more severe environments than automotive.
 - Testing of high temperature OM3 to automotive temperature requirements. Data transmission testing of VCSEL-OM3 links to automotive temperature range.
- The high volumes associated with applications such as 3D sensing and with automotive drive the economic feasibility of VCSEL-OM3 links.
- Future work:
 - IEEE P802.3cz contributions to progress the standard.
 - Develop ISO and IEC glass optical fiber, cable, harness standards for automotive.
 - Test to ISO TC22/SC32/WG10 and IEC 86 specifications for fiber, cable, harness.
 - Test to any OEM-specific requirements for glass optical fiber, cabling, harness.

Thank You!

Backup Slides

Experience with Specialty Optical Fiber

Both OFS and Corning make specialty optical fiber with fiber, coating, and cabling designed for stringent requirements including high temperature applications.

Coating and fiber cabling rated up to 180+° C.

Protection against changes in attenuation and strength.

Application to vehicle harnesses requires applying these technologies to low-cost, high-reliability solutions meeting automotive requirements.

Experience with Automotive Harnesses & Cabling

Aged Bend Loss At 150°C, MM50BI-MT (1,600 hours)

exposure time (hours)

400

MM50BI-MT Bend Loss at 150°C

MM50BI-MT fiber was exposed to 150 $^\circ\rm C$ continuously. Fiber was deployed in a single turn on a 7.5mm radius mandrel.

Corning[®] Specialty Optical Fiber Suite

			Coating Type					
			(Hermetic Coatings available on all fibers)					
ł			Standard Acrylate	Mid Ten	np Acrylate			
		Max Operating Temp (*C)	85°C	150°C	180°C			
	dard	Single-mode (Ge-doped core)	SMFHA	SM-MT SMH-MT	SM-XMT SMH-XMT			
Glass Type	Stan	Multimode Graded Index (Ge-stoped core)	MMFHA	MM50-MT MM50H-MT	MM50-XMT MM50H-XMT			
		Single-Mode Min Bend Radius = 5mm	SMBIH-5-A	SMBI-5-MT SMBIH-5-MT	SMBI-5-XMT SMBIH-5-XMT			
	Bend Insensitive ClearCurve®	Single-Mode Min Bend Radius = 7.5mm	SMBIH-7.5-A	SMBI-7.5-MT SMBIH-7.5-MT	SMBI-7.5-XMT SMBIH-7.5-XMT			
		Single-Mode Min Bend Radius = 10mm	SMBIH-10-A	SMBI-10-MT SMBIH-10-MT	SMBI-10-XMT SMBIH-10-XMT			
		Multimode Graded Index Min Bend Radius = 7.5mm	MM50BIH-A	MM50BI-OM2-MT MM50BIH-OM2-MT	MM50BI-OM2-XMT MM50BIH-OM2-XMT			
		Multimode Graded Index Min Bend Radius = 5mm	NA	MM80BI-MT MM80BIH-MT	MM80BI-XMT MM80BIH-XMT			
	r Band dth	Multimode OM3	NA	MM50BI-OM3-MT MM50BIH-OM3-MT	MM50BI-OM3-XMT MM50BIH-OM3-XMT			
	Highe	Multimode OM4	NA	MM50BI-OM4-MT MM50BIH-OM4-MT	MM50BI-OM4-XMT MM50BIH-OM4-XMT			
	MM	62.5µm Multimode	NA	MM62.5-MT MM62.5H-MT	MM62.5-XMT MM62.5H-XMT			
	Other	High Index, Polarization Maintaining, other	AVAILABLE: Inquire for Details					

Source: https://www.corning.com/microsites/coc/oem/documents/specialty-fiber/Corning-Specialty-Fiber-Product-Information-Sheets-111913.pdf

VCSEL-MMF Link Test Automotive Temperatures

Corning MM50BI-XMT-H (GI glass fiber OM3), TRUMPF VCSEL

Source: https://www.ieee802.org/3/OMEGA/public/jan_2020/perezaranda_OMEGA_02_0120_25G_Corning_fiber.pdf

Optical Fiber Solutions for Avionics

- OFS Optical Fiber Solutions for Avionics:
 - Multi-Fiber Cable with Rollable Ribbon
 - High-Temp Graded Index 50 µm (OM4)
 Bend Optimized Optical Fiber
 - FlightLinx[®] PLUS Fiber Optic Cable with High-Temp Optical Fibers (62.5, SM, Graded Index 50 µm (OM4))
 - µLinx[®] Fiber Optic Cable with High-Temp Graded Index 50 µm (OM4) Bend Optimized Optical Fiber

VCSEL-MMF Link Test Automotive Temperatures

OFS FlightLinx 50 µm OM3, TRUMPF VCSEL

Source: https://www.ieee802.org/3/OMEGA/public/jan_2020/perezaranda_OMEGA_03_0120_25G_OFS_fiber.pdf