

DOES CABLE SHIELDING PREVENT ALL EMC CHALLENGES ?

IEEE ETHERNET & IP @ Automotive Technology Week 2021

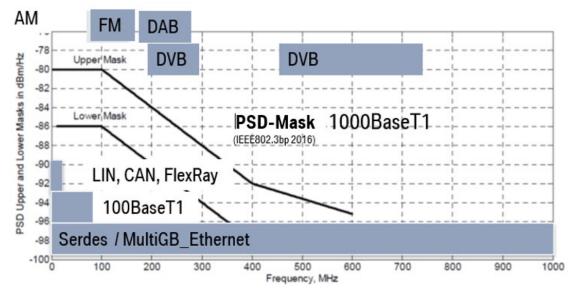
4 November 2021, Jamila J. Borda and Michael Kaindl

AGENDA

1. Background

- 2. Old versus new System Implementations
- 3. Cable Shielding Challenges
- 4. Means to prevent Shielding Interferences
- 5. Conclusion

01 BACKGROUND



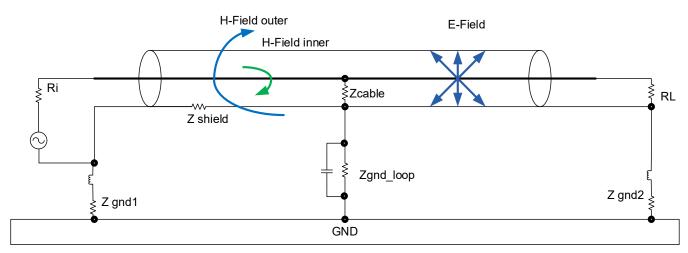
WHY DO WE NEED TO DISCUSS CABLE SHIELDING ?

- The legacy bus systems LIN, CAN, CAN-FD, FlexRay operate with unshielded cables
- Higher speed grades → smaller voltage amplitudes
 - More sensitive to noise
 - More crosstalk and noise coupling effects
- Ethernet & High Speed SerDes communications have a broad power spectrum coverage up to the GHz range → potential impact to on-board radio system

Usage of shielded cables is seen as a solution

- Today, shielded cables are already used in cars for specific applications: e.g. radio antennas with focus on analog data applications
- Today, shielded cables are also used for data communication in close proximity to radio antennas

A/FM: Amplitude/Frequency Modulation; DAB: Digital Analog Broadcasting; DVB: Digital Video Broadcasting, PSD: Power Spectral

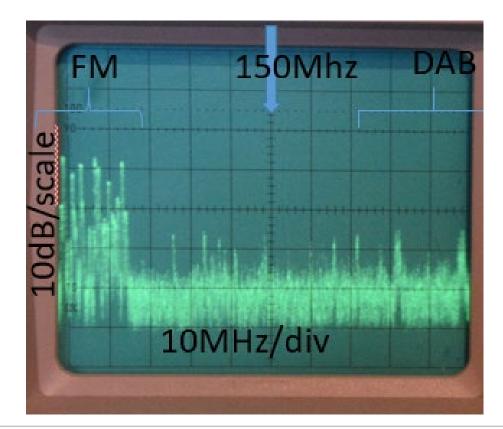

LIN: Local Interconnect Network; CAN: Controller Area Network; CAN-FD: CAN Flexible Data Rate

Density

WHAT DO WE INTEND TO ACHIEVE BY USING SHIELDED CABLES?

- Through the usage of shielded cables, aim is to prevent existing noise sources from entering sensitive subsystems by targeting:
 - 1. Reduction of **capacitive coupled interferences** due to electric fields
 - 2. Elimination of **common mode interferences** through low impedance path
 - 3. Eliminating inductively coupled magnetic field radiations with the shield
 - With STP cables, this is attained through twisted signal conductor pairs
 - However, with single conductor cables these radiations can be cancelled if there is an equal & opposite current flowing on shield versus signal conductor
 - Attaining additional EMC margin→ adequate coupling attenuation (unbalance and screening attenuation)

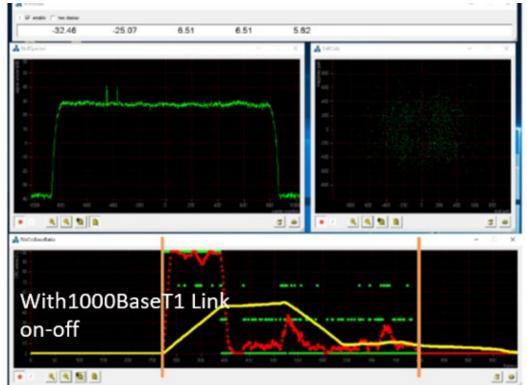
- Not directly connected to expectations of using shielded cables is:
 - Prevention and elimination of coupled magnetic field noise sources. This is strongly linked to shield-ground loop area and how a shield-ground termination is implemented. Hence, cable shield effectiveness on magnetic field noise sources can be achieved through loop area reduction and proper shield termination


O2 OLD VERSUS NEW SYSTEM IMPLEMENTATIONS

DIGITAL AUDIO BROADCASTING (DAB) FREQUENCIES IN THE PAST

- Legacy bus systems e.g. LIN, CAN, CAN-FD, FlexRay only use frequencies below critical frequencies such as Frequency Modulation (FM) or DAB bands
 - In the past, the Amplitude Modulation (AM) band was more critical with respect to EMC challenges
- Modern digital systems are accompanied by new challenges
 - E.g. DAB, which requires high quality radio reception
 - For an effective usage of DAB, radio antenna designers have increased the sensitivity of the corresponding antennas

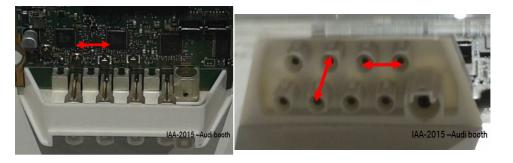
Power spectrum in a rural area in Bavaria, **DAB** ~ **15dB lower than FM** station →



IN THE PAST- DAB FREQUENCIES WERE NOT AFFECTED

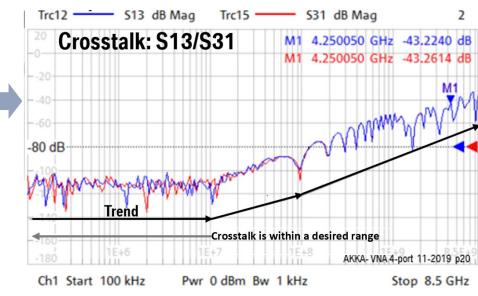
The following figures display the impact of operating a DAB test receiver and a 1000BASE-T1 UTP data link in close proximity:

➔ DAB is prone to interferences from the 1000BASE-T1 data traffic



Leading BMW to change the implementation concept of 1000BASE-T1 from UTP to STP

MULTIPORT CONNECTORS – PAST VERSUS PRESENT

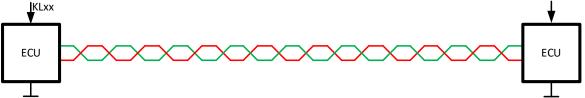

Past generation of multiport connectors

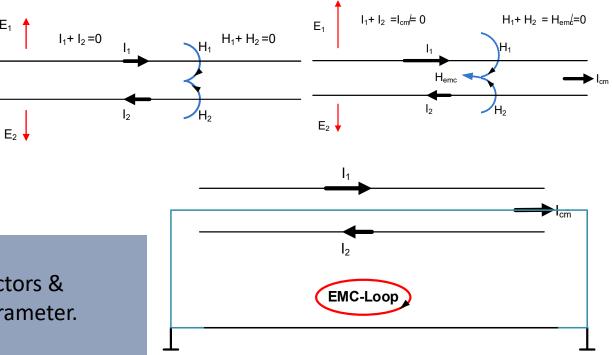
Crosstalk counter measures	Recent systems	Current systems	Findings
Distance	Ok	Smaller → Shield	Limited space at ECU
Shield	Ok, coax, separate	Ok, coax; common	To be observed
At PCB / distance	Ok, separate IC	Trend: more integration	Increased functionality

Present generation of multiport connectors

Almost no crosstalk effects below 10MHz; Increase of 10dB/decade from 10 to 100MHz Increase of 15 to 20dB/decade above 100MHz → no issue for classic bus system
 → only small impact for 100BASE-T1
 → impact for 1000BASE-T1 and

SerDes Does Cable Shielding Prevent All EMC Challenges ? | 4 November 2021 Public



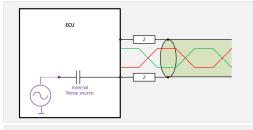

PREVIOUSLY: CONDUCTOR PAIR SYMMETRY WAS USED FOR EMI PREVENTION

- Most of the EMC issues are tackled through usage of a twisted and differential pair cable
 - A defined cable topology was needed to partially address high speed signal transfer requirements

100BASE-T1:

- This works fine since the Power Spectral Density (PSD) is above AM band and below FM Band.
- It also uses the impact of conductor pair symmetry as the main method of EMI prevention

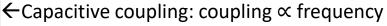
→ 1000BASE-T1 :


- Goes to the limits of the symmetry approach for cables, connectors & common mode chokes: crosstalk gets a new, major limiting parameter.
- Nyquist Frequency of 375MHz

03 CABLE SHIELDING CHALLENGES

WHICH CABLE SHIELD-GROUND NOISE COUPLING MECHANISMS ARE TO BE EXPECTED?

- Noise generated internally within the ECU→
- ECU Internal Noise source
- Direct noise source coupling to ground

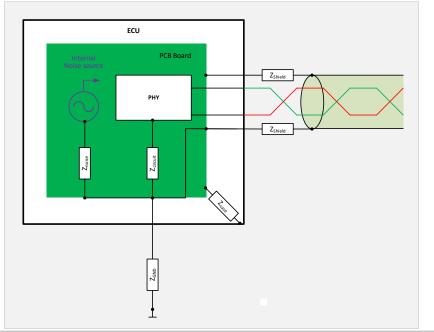


FCU

Noise source

ECU

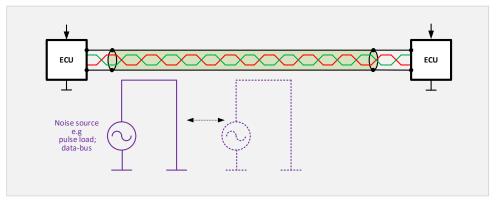
Internal Noise source

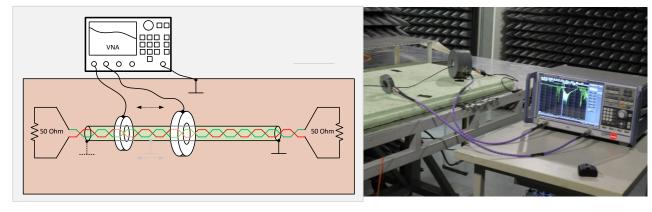


• This is aside the capacitive coupling due to parasitic capacitances

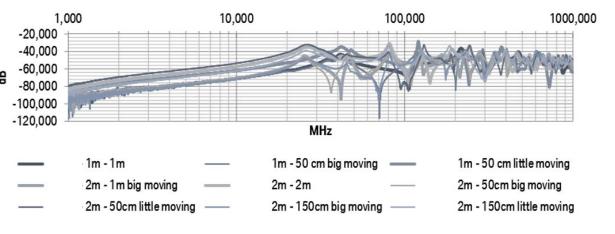
←Resistive coupling: independent of coupling frequency

 \leftarrow Inductive coupling: coupling \propto 1/frequency


Noise coupling via ground distribution


AN EXAMPLE OF INDUCTIVE NOISE COUPLING ON CABLE SHIELD

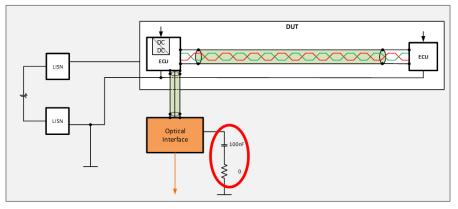
Noise coupled to shield from a source along the channel



- Noise coupling increases up to a range of ~25MHz;
- It then remains at a certain base level, but with resonances
- The resonances vary with cable length as well as the length of its ground line connection; as second order of the noise source

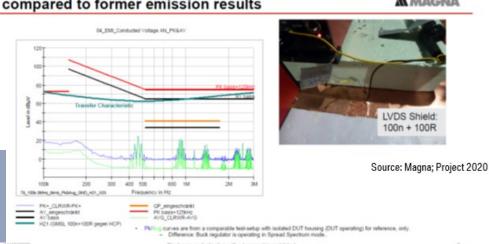
Additional ground clamps shift the resonances
Does Cable Shielding Prevent All EMC Challenges ? | 4 November 2021
Public

Test setup



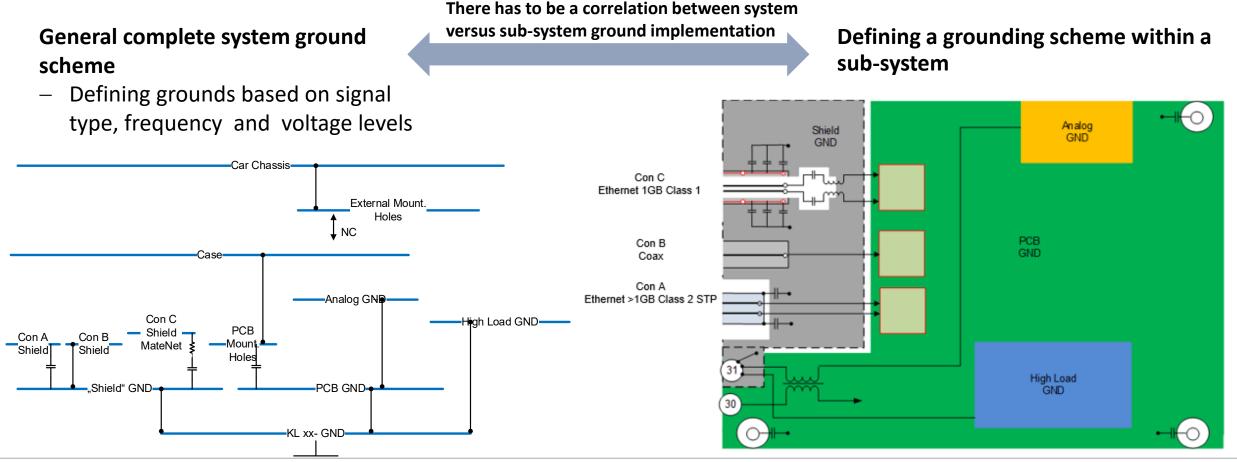
Noise Coupling Insertion Loss




DO SHIELDED CABLES PREVENT GROUND RESONANCE ?

EMC Test Setup

- Initial assessment of the test results \rightarrow no abnormalities are observed
- Then, with an optical interface EMI noise above the limit within the kHz range is observed
- A weak resonance system with noise up to the MHz range is stimulated by a DC/DC converter within an ECU by adding a
- → Internal ECU noise should be kept low
- Pre-check the resonance / impedance behavior of the ground system
- Cable shielding does not prevent nor eliminate ground

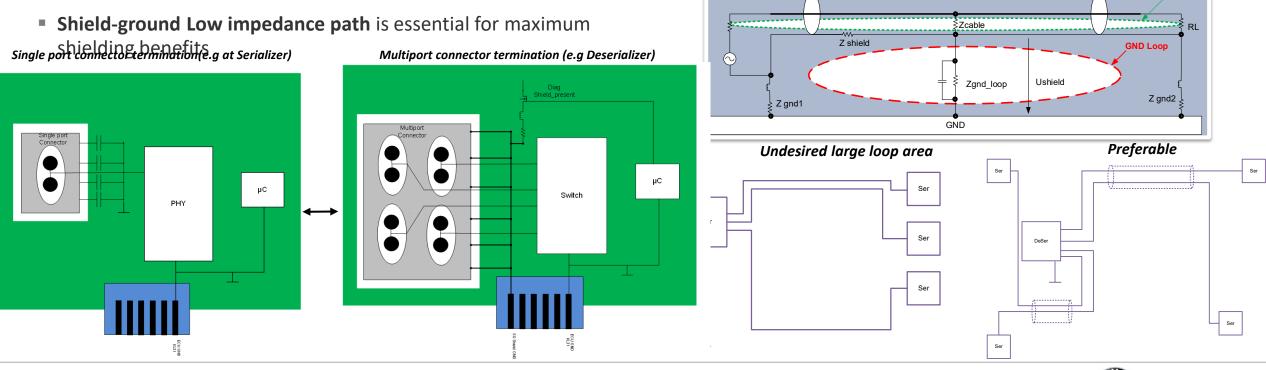

Measurement of Transfer Characteristic, 100n+100R compared to former emission results

MAGNA

04 MEANS TO PREVENT SHIELD INTERFERENCES

PRIORITIZING SYSTEM GROUND CONCEPT DEFINITION

For an early prevention of cable shield interferences, It is essential to define a specific system grounding configuration in the initial system design phase



Does Cable Shielding Prevent All EMC Challenges ? | 4 November 2021 Public

KEY CONSIDERATIONS FOR CABLE SHIELD TERMINATION & GROUND LOOPS

- AC coupling capacitor(s) should be used on the second end of the shield
 - breaking the ground loop at lower frequencies
 - Adaptations are required for ECU-ECU and for Display connections

- A shield-ground loop acts as either a receiving or transmitting monopole antenna -> Conducted & radiated EMI coupling
- This aids in shield connection retention at high frequencies and **Reduction** of the shield-ground loop area to the desired "transmission loop" range aids in minimizing the magnetic field strength within the loop and hence the induced noise current

Seite 17

Transmission Looi

05 CONCLUSION

CONCLUSION

Being able to use shielded cables is essential for current and future high data rate communication systems.

However, it is of essence that the correct and a well planned system implementation approach is incorporated. This is to commence by pre-defining an overall system grounding configuration and based on that defining a general corresponding shield-ground approach.

Takeaways:

- 1. Generally, ground planes are not ideal and therefore cause impedance variations
- 2. Cable shielding has minimum effect on inductively coupled noise but rather effectively addresses electric field noise sources
- 3. It is essential to define a system grounding configuration in the initial system design phase
 - Single point shield-grounding within a sub-system also favors elimination of common ground impedance
 - Multipoint system grounding scheme tends to operate better in high frequencies
- 4. Cable shielding effectiveness is impacted by the method of its termination
 - Low impedance shield-ground paths are essential for maximum shielding benefits
- 5. Cable shielding implementation should also target the root noise sources

THANK YOU FOR YOUR ATTENTION !