

The "Free Rider Principle" for Low-Bandwidth Flows in High Line-Rate Networks

Max Turner⁽¹⁾ and Jean Walrand⁽²⁾

TRANSFORMING HOW CARS OF THE FUTURE ARE BUILT

Agenda

- Zonal Architecture Introduction
- Bandwidth Discussion
- Burstiness and Latency
- Designing the Network
- Proposing a Solution
- Conclusions

What drives Zonal Architecture?

- Weight of wiring-harness (communication and power)
- Complexity of wiring-harness (power)
- Electronic fuses for power distribution (simplify automotive "network management (NM)⁽¹⁾")
- Hardware abstraction
- Number of ECU-boxes (housings, power conversion, ...)
- Compute, RAM and NVM scalability (pay for overhead only once)
- Simplified (over the air) update: fewer update targets, less double NVM overhead
 ⁽¹⁾ Do not confuse with the IT terminology around SNMP

Zonal Architecture reduces Wiring

Control-Loop Concerns

often only has low bandwidth requirement - this is not economically viable

What does (not) drive Bandwidth?

- Audio \leftrightarrow 200Mbit/s
- 5G cell \leftrightarrow 1Gbit/s
- Control \leftrightarrow 100Mbit/s
- Smart Sensors \leftrightarrow 2Gbit/s

•

 Σ < 5Gbit/s

Ethernet Video Bandwidth

Name	Resolution	Bandwidth	Link Usage
VGA (0.3Mpx)	640x480 24bit @60Hz	0.44Gbit/s	47% of 1Gbit/s
UXGA (1.9Mpx)	1600x1200 24bit @30Hz	1.4Gbit/s	59% of 2.5Gbit/s
QXGA (3.1Mpx)	2048x1536 24bit @30Hz	2.3Gbit/s	49% of 5Gbit/s
4k UHD (8.3Mpx)	3840x2160 16bit @30Hz	4.0Gbit/s	85% of 5Gbit/s

Cameras drive higher line-rates

- 100Byte overhead (MAC, IP or 1722, ...)
- max. frame size 1500Byte
- no blanking transmitted

A Zonal Architecture Example

Traffic Categories

- Sensors usually generate periodic data due to sampling (temperature, RPM, ...) or scan-rate (camera, radar, lidar, ...)
- Safety relevant (control) communication is usually periodic for loss (of application/input) detection (incl. counters, CRC)
- Event driven traffic is low in bandwidth, meaning small frames transmitted only infrequently
- TCP traffic, e.g. from/to the internet (5G), may use large frames, but has low bandwidth compared to the video/sensor traffic
- > For shapers to deliver predictable (per hop) latency, the ingress must be well defined⁽¹⁾
- > Re-transmissions due to losses introduce unpredictable bandwidth needs
- In order to avoid losses for all streams:
 - ✓ Shape and police⁽²⁾ **all** flows
 - \checkmark Shape and police at the talkers⁽³⁾

⁽¹⁾See next slides on Burstiness

⁽²⁾ Policing: Check ingress rates and drop frames upon overload ⁽³⁾ E.g. in a middleware, the communication stack or NIC HW

Burst Accumulation on a "Daisy-Chain"

⁽¹⁾ Streams β and γ consist of 8 flows each

What is Burstiness?

Mathematically^[1]: burstiness A is the max. backlog in a buffer that serves the flow at its average rate a: If at most A + at bits arrive in any t seconds⁽²⁾, we say that the flow type is (A, a)

⁽²⁾ This is a linear upper bound on the 'arrival curve' of the flow

2021 Ethernet & IP @ Automotive Technology Week, M. Turner (Ethernovia) & J. Walrand (UC Berkeley)

burstiness A = maximum backlog

^[1] R.L. Cruz, "A Calculus for Network Delay", Part I&II, IEEE Transactions on Information Theory, Vol. 37, No. 1, Jan. 1991

Classifying Flows

We call a flow (*A*, *a*) a 'fast flow', if $a/R \approx 1$ [<] We call a flow (*A*, *a*) a 'small flow', if a/R <<1

Burst Accumulation for Fast Flows

A small number of interfering streams ($\beta \& \gamma$) cause little to no accumulation B Sw. 1 Sw. 2 2 in a fast flow (α) when sharing few hops (2)(1(3) α $\boldsymbol{\alpha}$ 0 α (1) R $\boldsymbol{\Omega}$ (2) $\gamma \alpha$ (3)

Burst Accumulation for Small Flows

There is only little burstiness accumulation for small flow α , if flow rate a << R line-rate

1

(2)

(3)

The Free Rider Principle for Small Flows

Consider two flows α =A+a*t (max. frame size⁽¹⁾ L_A) and β =B+b*t that share an output port of line-rate R:

We say flow α is small, if a/R << 1, then

 $A' \leq A + (B+L_A)*a/R$

i.e. A'≈A

meaning the burstiness of α remains constant

We call A'=A the small flow approximation, which enables the

Free Rider Principle:

Small flows do not suffer additional latency if combined with fast flows on high line-rate links

2021 Ethernet & IP @ Automotive Technology Week, M. Turner (Ethernovia) & J. Walrand (UC Berkeley)

⁽¹⁾ including L_A turns Delay into Latency

Configuration Complexity

- CBS [IEEE Std. 802.1Qav]
 - per class shaping is easy to configure, especially if only done only at the talkers
 - per class shaping can lead to buffer "residue" and constant delays (IEEE Std. 802.1Q: L.3.1.3 Permanent delay) in daisy chain networks
 - per flow policing is desirable to prevent intra-class interference and guarantee burst sizes
- ATS [IEEE Std. 802.1Qcr]
 - per flow is easy to configure if only done only at the talkers, but means significant effort in the network
 - per destination shaping is a viable option
 - per flow policing is desirable to prevent interference and guarantee burst sizes
- TAS [IEEE Std. 802.1Qav]
 - bus mode is very inefficient in larger networks
 - phased mode is very complex to configure (NP-hard)

Solution Proposal

- If the network is sufficiently small (low number of hops) and link speeds increase from the leaves to the root
 - One can use credit-based shaping only at the talkers to guarantee milisecond network transport latency
 - No re-shaping within the network is required
 - Policing at the Talkers is required to ensure deterministic behaviour
- Notes
 - Shaping at sources is simple: depends only on source
 - Combine with priority where needed
 - Prevent loss of data for all flows, especially best effort traffic, which may be retransmitted

Details: J. Walrand, M. Turner, and R. Myers, "An Architecture for In-Vehicle Networks," *IEEE Transactions on Vehicular Technology*, vol. 70, no. 7, pp. 6335–6342, Jul. 2021.

Conclusions

- Camera traffic aggregated in zonal controllers provides a viable requirement to implement
 - few high line-rate links and
 - few hops
- This enables the use of the Free Rider Principle to transport
 - low bandwidth control traffic at millisecond latency through the network with
 - shaping only at the sources and thereby allowing for
 - a low configuration complexity
- Removing the need for frame packing efficiency (nPDU feature) further reduces latency and configuration complexity
- Policing of all flows⁽¹⁾ at the sources ensures QoS for all other flows

ThAnk you

walrand@berkeley.edu

max.turner@ethernovia.com

