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Agenda

• Zonal Architecture Introduction
• Bandwidth Discussion
• Burstiness and Latency
• Designing the Network
• Proposing a Solution
• Conclusions
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What drives Zonal Architecture?

• Weight of wiring-harness
(communication and power)

• Complexity of wiring-harness (power)
• Electronic fuses for power distribution

(simplify automotive “network management (NM)(1)”)
• Hardware abstraction
• Number of ECU-boxes

(housings, power conversion, ...)
• Compute, RAM and NVM scalability (pay for overhead only once)
• Simplified (over the air) update: fewer update targets, less double NVM 

overhead
(1) Do not confuse with the IT terminology around SNMP
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Zonal Architecture reduces Wiring
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Control-Loop Concerns
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• Audio ↔ 200Mbit/s
• 5G cell ↔ 1Gbit/s
• Control ↔ 100Mbit/s
• Smart Sensors ↔ 2Gbit/s
• ...
Σ < 5Gbit/s

What does (not) drive Bandwidth?
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Ethernet Video Bandwidth

Name Resolution Bandwidth Link Usage
VGA (0.3Mpx) 640x480 24bit @60Hz 0.44Gbit/s 47% of 1Gbit/s
UXGA (1.9Mpx) 1600x1200 24bit @30Hz 1.4Gbit/s 59% of 2.5Gbit/s
QXGA (3.1Mpx) 2048x1536 24bit @30Hz 2.3Gbit/s 49% of 5Gbit/s
4k UHD (8.3Mpx) 3840x2160 16bit @30Hz 4.0Gbit/s 85% of 5Gbit/s

• 100Byte overhead (MAC, IP or 1722, ...)
• max. frame size 1500Byte
• no blanking transmitted

Cameras drive higher line-rates
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A Zonal Architecture Example
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Traffic Categories

o Sensors usually generate periodic data due to sampling (temperature, RPM, ...) or scan-rate (camera, radar, 
lidar, ...)

o Safety relevant (control) communication is usually periodic for loss (of application/input) detection (incl. 
counters, CRC)

• Event driven traffic is low in bandwidth, meaning small frames transmitted only infrequently

• TCP traffic, e.g. from/to the internet (5G), may use large frames, but has low bandwidth compared to the 
video/sensor traffic

 For shapers to deliver predictable (per hop) latency, the ingress must be well defined(1)

 Re-transmissions due to losses introduce unpredictable bandwidth needs

 In order to avoid losses for all streams:
 Shape and police(2) all flows
 Shape and police at the talkers(3) (1) See next slides on Burstiness

(2) Policing: Check ingress rates and drop frames upon overload
(3) E.g. in a middleware, the communication stack or NIC HW
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Burst Accumulation on a “Daisy-Chain”

Flow α accumulates bursts due to 
bursts from interfering streams(1) β and γ

(1) Streams β and γ consist of 8 flows each
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not bursty:

What is Burstiness?
• Intuitively: uneven spacing of frames

bursty:

• Mathematically[1]: burstiness A is the max. backlog in a buffer that serves the flow at
its average rate a: If at most A + at bits arrive in any t seconds(2), we say that the flow type is (A, 
a)

same average rate a
for both flows

Note: burstiness A is not the largest number of back-to-back bits! burstiness A = maximum backlog
burstiness A = 3L, max. back-to-back bits = L

bridge buffer

(2) This is a linear upper bound on the ‘arrival curve’ of the flow [1] R.L. Cruz, “A Calculus for Network Delay”, Part 
I&II, IEEE Transactions on Information Theory, 
Vol. 37, No. 1, Jan. 1991
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Classifying Flows

Accumulation of α (A, a) during transmission of β (B, b):
= (rate of α) * (transmission time of burst of β)
= (rate of α) * (size of burst of β)/(line-rate R)
= B ∗ a/R

We call a flow (A, a) a ‘fast flow’, if a/R ≈ 1
We call a flow (A, a) a ‘small flow’, if a/R <<1

<
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Burst Accumulation for Fast Flows

A small number of interfering
streams (β & γ) cause little to no accumulation
in a fast flow (α) when sharing few hops
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Burst Accumulation for Small Flows

There is only little burstiness 
accumulation for small flow α, if
flow rate a << R line-rate
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The Free Rider Principle for Small Flows

Consider two flows α=A+a∗t (max. frame size(1) LA) and β=B+b∗t that share an 
output port of line-rate R:
We say flow α is small, if a/R << 1, then

A’ ≤ A + (B+LA)∗a/R
i.e. A’≈A 

meaning the burstiness of α remains constant
We call A’=A the small flow approximation, which enables the 

Free Rider Principle:
Small flows do not suffer additional latency if combined with fast flows on high 
line-rate links

(1) including LA turns Delay into Latency
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Configuration Complexity
• CBS - [IEEE Std. 802.1Qav]

• per class shaping is easy to configure, especially if only done only at the talkers
• per class shaping can lead to buffer “residue” and constant delays (IEEE Std. 802.1Q: L.3.1.3 

Permanent delay) in daisy chain networks
• per flow policing is desirable to prevent intra-class interference  and guarantee burst sizes

• ATS - [IEEE Std. 802.1Qcr]
• per flow is easy to configure if only done only at the talkers, but means significant effort in the 

network
• per destination shaping is a viable option
• per flow policing is desirable to prevent interference and guarantee burst sizes

• TAS - [IEEE Std. 802.1Qav]
• bus mode is very inefficient in larger networks
• phased mode is very complex to configure (NP-hard)
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Solution Proposal

• If the network is sufficiently small (low number of hops) and link speeds increase 
from the leaves to the root

• One can use credit-based shaping only at the talkers to guarantee milisecond network 
transport latency

• No re-shaping within the network is required
• Policing at the Talkers is required to ensure deterministic behaviour

• Notes
• Shaping at sources is simple: depends only on source
• Combine with priority where needed
• Prevent loss of data for all flows, especially best effort traffic, which may be retransmitted

Details: J. Walrand, M. Turner, and R. Myers, “An Architecture for In-Vehicle Networks,” IEEE Transactions on Vehicular 
Technology, vol. 70, no. 7, pp. 6335–6342, Jul. 2021.
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Conclusions

• Camera traffic aggregated in zonal controllers provides a viable 
requirement to implement 

• few high line-rate links and
• few hops

• This enables the use of the Free Rider Principle to transport 
• low bandwidth control traffic at millisecond latency through the network with 
• shaping only at the sources and thereby allowing for 
• a low configuration complexity

• Removing the need for frame packing efficiency (nPDU feature) further 
reduces latency and configuration complexity

• Policing of all flows(1) at the sources ensures QoS for all other flows

(1) Policing- check ingress rates and drop frames upon 
overload - can be done e.g. in a middleware, the 
communication stack or NIC HW
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